Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EXCLI J ; 21: 400-414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368462

RESUMO

Polycystic ovary syndrome (PCOS) is the most common cause of women's infertility. Some inflammatory pathways play a pivotal role in the pathogenesis of PCOS. This study aimed to investigate the possible beneficial effects of minocycline on chemokine-like receptor 1 (CMKLR1) and Insulin Receptor (INSR) in a PCOS model. A molecular docking study was implemented using Molecular Operating Environment (MOE) software. The PCOS was induced in NMRI mice (mean body weight 14.47±0.23) by 28 days estradiol valerate injection (2 mg/kg/day). The mice were then divided into six groups (n=8 per group, mean body weight 17.77± 0.26): control (received normal saline), PCOS model, control for minocycline, minocycline treated PCOS (50 mg/kg), letrozole treated PCOS (0.5 mg/kg), and metformin-treated PCOS (300 mg/kg). Serum FSH, LH, estradiol (E2), and testosterone were detected by ELISA. The ovarian tissues were stained by hematoxylin and eosin. The CMKLR1 and INSR expression levels were determined by Real-time-PCR. The molecular docking studies showed scores of -10.92 and -9.30 kcal/mol, respectively, for minocycline with CMKLR1 and INSR. Estradiol valerate treatment led to a significant increase in E2, graffian follicle, and decrease in corpus luteum (CL) numbers (P<0.05), while minocycline treatment improved these PCOS features. The minocycline treatment significantly decreased the CMKLR1 expression and increased the INSR expression (P<0.05) while the CMKLR1 expression was increased in PCOS model. Minocycline may improve ovulation in PCOS model by returning E2 to a normal level and increasing CL number (ovulation signs). These beneficial outcomes may be related to the changes in CMKLR1 and INSR gene expression involved in glucose metabolism and inflammation.

2.
J Reprod Immunol ; 144: 103289, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610928

RESUMO

Polycystic ovary syndrome (PCOS) is the most common cause of ovulatory infertility. Inflammation may be involved in the pathogenesis and development of PCOS. We investigated the anti-inflammatory effect of minocycline on TNF-α, TNFR2, and TLR4 expression levels and the key features of PCOS in a mouse model. Molecular docking was performed by Molecular Operating Environment software. PCOS was induced by estradiol valerate injection (EV) (2 mg/kg/day) in 40 mice. After 28 days, the mice were divided into five groups, including control, PCOS, minocycline control, minocycline PCOS model (50 mg/kg), and letrozole PCOS (0.5 mg/kg). The Levels of FSH, LH, E2, and testosterone were determined by ELISA. H&E staining was used for histological analysis in the ovarian tissues. Docking scores were -10.35, -10.57, and -12.45 kcal/mol for TNFα, TLR-4, and TNFR2, respectively. The expression levels of TNF-α, TNFR2, and TLR4 were detected by Real-Time PCR. PCOS models exhibited acyclicity, a significant increase in E2 levels (P < 0.01), and no difference in FSH, LH, and testosterone. The expression levels of TNF-α, TNFR2, and TLR-4 significantly increased in PCOS (2.70, 7.90, and 14.83-fold, respectively). EV treatment significantly increased graafian follicles (P < 0.001) and decreased corpus luteum (CL) (P < 0.01). Minocycline treatment in PCOS led to a significant decrease in E2 (P < 0.01) and graafian follicles (P < 0.001) and a significant increase in the CL numbers (P < 0.05). Our findings showed the positive effects of minocycline on estradiol level, CL and graafian follicles counts, suggesting that minocycline might inhibit these proteins and improve ovulation in our mouse model of PCOS.


Assuntos
Minociclina/farmacologia , Ovulação/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Estradiol/administração & dosagem , Estradiol/toxicidade , Feminino , Humanos , Letrozol/farmacologia , Letrozol/uso terapêutico , Camundongos , Minociclina/uso terapêutico , Simulação de Acoplamento Molecular , Ovário/imunologia , Ovário/patologia , Ovulação/imunologia , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/imunologia , Síndrome do Ovário Policístico/patologia , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...